< ¢. Kleaae and R.E.Vesley The Covodatwas of Totucbioashic Ma:k&aufaﬁc;

42 FORMAL AINTUITIONISTIC NALYSIS CH. 1

(d)  Quly, «(y)) V Qaly. «(y)), ~(Q1(y. a(y)) & Qa(y, «(y))) H*
oo — o(v’) = rl(y' “(Y)) 2/ Ql(y- a(Y))'
Fa(«(0)=q & Vya(y’) {rz(y. a(y))  Q(y. a(y)))-
(©  Qua(y) v Qz(a(y)), +(Qu(a(y)) & Q2(a&(y))) H*
_ Inay)) if Qu@(y)),
AaVyaly)= {ra(a(y» it Qa(a())
and
Qu(y, &(y)) V Qa(y, &), ~(Qu(y. &) & Qa(y, &(y))) F*

[ rly &) if Quly. &(y)),
JaVyaly)= {rz(y. &(y)) if Qa(y, &(y)).

ProoFs. (a) In the SPECIAL cASE that Qy(y), Qa(y) are prime for-
mulas, or equivalent to prime formulas by applications of #D and
#E, we need only apply Lemma 5.3 (a) for p(y) the term p obtained
by using #F with F Q¢(y) ~ qi=0 and with p(y) as the p; ( = 1, 2).

However, the GENERAL CASE can be treated directly, thus. The first
assumption formula gives two cases. Casg 1: Q;(y). Then =Q2(y).
So

(Quy) V Qa(y)) & (Qu1(y) 2 p1(y) =pa(y)) & (Qa(y) D paly) =pa(y))
By 3-introd.,
3a[(Quy) V Q2(y)) & (Qu(y) D a=pa(y)) & (Qa(y) D a=pa(y))].
CASE 2: Qq(y). Similarly. — By V-introd. and *2.2,
3aVy[(Quly) V Q2(v)) & (Qu(y) D «(y) =p1(y)) & (Q2(y) D «(y)=Pp2(y))).

(b) Substituting (y)e, At(y)1 for y, «, and using *0.1:
Qu((y)e, (y)1) V Q2((¥)o, (yh) and =(Qu((y)o, (y)1) & Q2((¥)o, (¥)1)). So,

using (a), we can assume for 3-elim.

(e 300 i Qu(or ()1),
vyely)= {rz((y)o. ) if Qe((V)o, ()0,

- Applying Lemma 5.3 (b) with p(<y, z)) as the r(y, z), assume for
J-elim.

(ii) %(0)=q & Vya(y')=p(y, «(y)).
Taking <y, x(y)> for y in (i) (by V-elim.) and using *25.1, the result

(i)
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with (ii) gives Qi(y, a(y)) D a(y’)=r(y, «(y)). By &-, V- and 3-introds.,
we obtain the required formula. It does not contain p or « free, so
the 3-elims. can be completed.

(c) witH &(y). By *158 since Seq(z) is prime, Seq(z) V ~Seq(z).
Using cases thence, and in the first case *23.6 with Q,(&(y)) V Q2(a&(y)):
(i) (Seq(z) & Qi(z)) V (Seq(z) & Qo(z)) V -1Seq(z). Using *23.6 with
~(Q1(8(y)) & Qa(&(y))): Seq(z) D =(Qu(z) & Qafz)). Using this and
*50, the three cases in (i) are mutually exclusive. Assume for 3-elim.
from the result of an application of (a) with m = 3,

ri{z) if Seq(z) & Qu(z),
Vzp(z)= { re(z) if Seq(z) & Qa(z),
0 if ~Seq(z).

Now use Lemma 5.3 (c) with (z) as the r(z) (and later *23.5).

(c) witH &(y). Apply (¢) with &(y), for Q(lh(z), My pyyP{*™" "),
ry(lh(z), nl<|h(z)Pi(Z)'_l) as the Qq(z), ry(z).

LEMMA 5.6. Let x be a variable, and A(x) a formula. Then

AMxA(x) FA(x) VaA(x),

PrOOF. Assume preparatory to 3-elim. from J!wA(w), A(w) &
Vx(A(x) D w=x). By *158, w=x V wsx. Case |: w=x. Then A(x),
whence A(x) V =aA(x). CasE 2: w##x. Then SA(x), whence again
A(x) V =A(x). )

§ 6. Postulate on spreads (the bar theorem). 6.1. In the intuition-
istic set theory or analysis of Brouwer, a fundamental role is played
by what he called a “‘set (Menge)" in his early papers on the subject
(1918-9 I p. 3, 1919 pp. 204-205 or 950-951, 1924-7 1 pp. 244-245)
and more recently a ‘‘spread” (1954 p. 8). There are several versions
of the notion of ‘spread’, differing in details. We begin with a version
differing from that of Brouwer’s early papers, reproduced in Kleene
1950a § 1 (p. 680 end line 8, add “> 0”), by the omission of what
Brouwer called “sterilized (gehemmt)" sequences. In 6.9, we shall
consider other versions,

A given spread is generated by (i) choosing natural numbers in
sequence, (either freely or) under an effective restriction which says,
given the (numbers chosen in the respective) previous choices if any
and any number, whether that number may be chosen next, and
(ii) after each choice correlating effectively an object (depending on the

Nocth- uo((ao&, \RgS
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previous choices if any and that choice) from a fixed countable set.
Furthermore, under (i) it is effectively determined after each choice
whether (depending on the previous choices if any and that choice)
the sequence of choices is to ferminale therewith or shall continue;
in the latter case, the restriction governing the choices must allow
at least one natural number to be chosen next.

When a sequence of choices terminates, the element of the set or
spread correlated to the sequence is the finite sequence of the objects
correlated to the choices up to its termination. When a sequence of
choices continues unterminated ad infinitum, the element correlated
to the sequence is the infinite sequence of the objects correlated to the
choices; intuitionistically this element is not considered as completed,
but only as in process of growth as the choices proceed.

The word “effectively” in the foregoing is intended to convey what
Brouwer expressed (in his early papers) by speaking of a ‘“law
(Gesetz)”; and indeed in 1924 § 1, 1927 § 2 he used “algorithm (Algo-
rithmus)” in a related connection. What choices are permitted, and
whether termination takes place, is determined by a law, which we
call the choice law. What object is correlated is determined by another
law, which we call the correlation law. (Cf. Kleene 1950a p. 680, and
Heyting 1956 p. 34, where the terminology is a little different.) These
two laws each operate upon the finite sequence of the choices (natural
numbers) up to and including the one which is under consideration
(i.e. the natural number about to be chosen, when the question is
whether the choice of it after the choices already made if any is
permissible; the one just chosen, when the question is whether the
sequence of choices thereupon terminates, or what object is thereupon
correlated).

A set or spread is not thought of intuitionistically as the “totality”
of its elements, not even in the case all (permitted) choice sequences
terminate so that the elements themselves become intuitionistically
completed objects. To do so would (in general) involve the completed
infinite (IM p. 48); e.g. the spread in which all choice sequences
terminate after one choice which is completely free, with the number
chosen correlated, is simply the set of all (unit sequences of) natural
numbers. A spread from the intuitionistic standpoint is the pair of
laws governing the generation process under which its elements grow.
Through his notion of ‘spread’, Brouwer found a way, while maintain-
ing the standpoint of the potential infinite, to deal with collections
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some of which are even uncountably infinite (of classical cardinal
number 2Re)

The objects correlated to the choices in Brouwer's applications may
be, e.g., natural numbers, rational numbers, intervals with rational
endpoints. Since for a given spread they must be chosen from a given
countable class of objects, abstractly we can always take them to be
natural numbers. When we do so, the notations available in the formal
system suffice for the theory of spreads.

Indeed, these notions include the fundamental constituents for
dealing with spreads. These constituents can be combined under the
formation rules of the system in a flexible manner, so that the parti-
cular way of combining them that gives a spread loses some of its
preeminence in this formalism. Cf. however 7.8 below.

6.2. In this section, we shall concentrate on the choice sequences,
which may underlie a spread, and which can be regarded as themselves
constituting a spread by taking for the correlation law the trivial
one which correlates the last natural number chosen. If then there
is no restriction on the choices, the spread consists simply of all the
infinite sequences of natural numbers in process of growth. This
Brouwer called the universal spread. We study it now.

When exactly ¢ (> 0) natural numbers ag, ay, ..., a—; have been
chosen successively, we have in other words chosen the first ¢ values
a(0), «(1), ..., aft—1) of a number-theoretic function «f(x), the
remaining values of which are still undetermined. Now we may
associate with any finite sequence ay, ..., ai-; of natural numbers
the natural number a = pfett- . pfoit! = Cap4-1, ..., a4+ 1> =
(@0, ..., a-1] = &(¢), whereupon ¢ = Ih(a()), and a; = afi) =
(@()s=1 for 7 < ¢ (cf. #18-#23 in 5.5, and 5.7). This maps the
finite sequences of choices 1-1 onto the natural numbers a such that
Seq(a), which we call sequence niumbers. The theory of choice sequences
can now be dealt with in terms of the sequence numbers. The funda-
mental relation between sequence numbers is that of a sequence
number a to the sequence numbers a%2#*1 (s = 0, 1, 2, ...) which
represent the sequences ay, ..., @1, s coming from ay, ..., amy by
choosing one more number s; the numbers ax28+1 are thus exactly
the numbers &(¢+1) for the various functions « such that a = &(f).
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6.3. Because the sequences of choices (“Wahlfolgen' in Brouwer
1918-9 and 1924-7, “infinitely proceeding sequences’ in Brouwer 1952
and Heyting 1956) are considered intuitionistically as in process of
growing by new choices, especial prominence is given in intuitionism
to those propertics of choice sequences which if possessed can be
recognized effectively as possessed at some (finite) stage in the growth
of the choice sequence. Such a property of a choice sequence « is of
the form (Ex)R(a(x)) where R(a) is a number-theoretic predicate,
effective at least when applied to sequence numbers «.

With respect to such a predicate R(a), we say that, as a choice
sequence «(0), (1), «(2), ... is generated, the finite sequence of the
choices «(0), ..., «(t—1), or the sequence number &(f} representing
these first ¢ choices, is secured, if it is known already from these ¢
choices by the test of the predicate R that « possesses the property
(Ex)R(a(x)), i.e. if (Ex), R(&(x)); past secured, if this was known
already without the last choice, i.e. if (Ex);<R(&(x)); tmmediately
secured, if this is known only after the last choice, i.e. if (x)z<.R(&(x)) &
R(a(t)) (the first conjunctive member can be omitted if R is taken so
that, for any a, R(a(x)) is true of at most one x). We say «(0), ...,
aft—1), or &(¢), is securable, if, no matter how the future choices (the
t+1-st, {4-2-nd, £+3-rd, ...) are made, « will possess the property
(Ex)R(x(x)), ie. if (B)[B(®)=a(t) - (Ex)R(B(x))] or equivalently
(Ex)ztR(a(x)) v (B)(Ex)R(a(t)*¥B(x)). In particular (changing the
bound variable 8 to «)(1)is securable exactly if (a)(Ex)R(a(x)). We
have stated these notions with respect to a fixed predicate R(a).
A sequence number w not past secured is securable with respect
to R(a) exactly if(1)is securable with respect to la R(w=a). A sequence
number w is barred, if(1)is securable with respect to Ada R(w=a), i.e.
if («)(Ex)R(w*x(x)). (Numbers other than sequence numbers are to
be unsecured, unsecurable, unbarred.)

6.4. We have used function variables in expressing these notions.
But there is a basic difference between the classical and the intuition-
istic concepts; for the intuitionists, the functions are not completed.
The universal function quantifier (8) or (), with its scope, in the
expression for securability cannot be considered intuitionistically as
a conjunction extended over all completed one-place number-theoretic
functions, as it is classically. The intuitionistic mecaning of
(a)(Ex)R(a(x)) is that, whenever one chooses successively natural
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numbers a(0), «(1), x(2), ... in any way, onc must eventually en-
counter an x such that R(x(x)).

How then can the intuitionists utilize the notion of securability?

To begin with, they can particularize, compatibly with their inter-
pretation of (a), from () (Ex)R(a(x)) to (Ex)R(ai(x)) for such partic-
ular choice sequences o) as they can specify; these, in connection
with which Brouwer (1952 p. 143, 1954 p. 7) uses the term “‘sharp
arrows’’, are ones whose growth can be completely governed in
advance by a law (after any ¢ > 0 choices, the law allows exactly
one next choice). We have the formal counterpart of this in Axiom
Schema 10F, where the functors u express primitive recursive functions
in the case they contain no function variables (by Lemma 3.3).

But it would seem that this makes rather weak use of (a}(Ex)R(&(x)).
In fact, under the interpretation that an «; giving a sharp arrow is
a general recursive function, (xi)(Ex)R{ai(x)) is in general weaker
than {(a)(Ex)R(a(x)); and the important “fan theorem” (in 6.10 below)
fails when its hypothesis is weakened in the corresponding manner
(Kleene 1950a §3, or Lemma 9.8 below). The intuitionists may
refrain from adopting this interpretation, but they are in no position
to refute it, since their actual constructions or laws conform to it
{Chapter 11 below). Pursuing the matter further from the classical
standpoint, while the fan theorem becomes true upon enlarging the
class of a's to the arithmetical functions (those such that «fx)=w
is an arithmetical predicate IM p. 239; cf. Lemma 9.12 below), in
order to exhaust the full force of (a)(Ex)R(a(x)) not even all the
hyperarithmetical functions suffice (Kleene 1955b pp. 210, 208 with
1959 p. 48; or 1959b).

REMARK 6.1. In the intuitionistic system, using *158, we can prove
VaVx(x(x)=0V «(x) 0), which seems to imply that any function «
taking only O and 1 as values is recursive. (More generally, we can
prove VaVxVw(a(x)=w V a(x)7#w), which seems to say that, for
each a, the predicate o(x)=w is decidable, so presumable recursive,
50 by IM Theorem III p. 279 the function a, = Ax pwa(x)=w, is re-
cursive.} On the other hand, as noted, we cannot interpret the uni-
versal quantifier (a) to mean “‘for all recursive functions «'" without
making the fan theorem of intuitionism false. This apparent contra-
diction is explained thus. As we choose the numbers «(0), (1), «(2), . ..
making up any choice sequence «, it will be known after each choice
what number has been chosen; it is in this sense that VaVx(a(x)=0V

presy:
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a(x) #0) is true. But as a choice sequence «(0), a(1), x(2), ... grows,
in advance of each choice any number in the case of the universal
spread (any number < 1 in the case of the spread of choice sequences
governed by (x)a(x) < 1) is eligible to be chosen: so the « is not
restricted to be a recursive function.

REMARK 6.2. In the present classical system with the same for-
mation rules as the intuitionistic, the functors u available for Axiom
Schema 10F are the same. (This is not so in classical systems like
the ones in Hilbert-Bernays 1939 Supplement IV having a choice
operator ¢ or descriptive operator ¢) Fuller use of assumptions
VaA(x) is obtained in the classical system via indirect proofs.

6.5. Brouwer found a solution to the problem of how to utilize an
hypothesis of securability more fully than by Axiom Schema 10F.
This consists in looking at the situation from the opposite direction,
proceeding backwards from those sequence numbers &(x) for which
R(&(x)) to the other sequence numbers having such numbers in all
their (sufficiently continued) extensions.

To fix our ideas, let us confine our attention for the moment to
sequence numbers not past secured (so that, in any sequence a of
choices, we don’t overrun the first x at which we find R(G(x)) true).
Then, slightly paraphrasing Brouwer 1927 FooTNOTE 7 to make it
read in our notation and terminology: Thought through intuitionisti-
cally, this securability is nothing else than the property which is
defined thus. It holds for every sequence number @ such that R(a).
It holds for any sequence number a, if for every s (s =0, 1,2, ...)
it holds for a»25+1. This remark draws after it immediately the well-
orderedness property .

In other words, Brouwer’s Footnote 7 says that securability is that
property (of sequence numbers not past secured) which originates
at the immediately secured sequence numbers, and propagates back
to the unsecured but securable numbers across the junctions between
a sequence number a4 and its immediate extensions ax2s+! (s = O,
1,2,...).

Let us review the situation using a geometrical picture (Figure 1).
We can represent the universal spread 6.2 by a “tree”, with the
sequence numbers a = pjetl.. . -pfit! = [aq, ..., a,] at the ver-
tices. The initial (leftmost) vertex is occupied by the sequence number
1 =[] = &(0). From any vertex, occupied by the sequence number a,
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(1,1,1,1]
[1,1,1]4[1,1,1,01
/ (1,1,0,1]
[1,1] Ar[1,1,o]/[1,1,o,01
[1,0,1,1]
(1,0, 1]4 1,0,1,0]
(1,0,0,1]
w00 =~ 0,00
[0,1,1,1] h

[0,1,1] 4[0, 1,1,0]
[0,1,0,1]
[0,1] [0,1,0] /[0.1,0,01

(1] >[1,0]

(o0,0,1, 1]

[0,0,1] 4[0,0, 1,0]

[o’ 0' 0, 1]

[] [o] [0,0] [0, 0,0} [0,0,0,0]

Figure 1.

infinitely many arrows lead to the next vertices, occupied by the
sequence numbers a*28+1 (s =0,1,2,...). A part of this tree is
shown in Figure 1; but the arrows for s >> 1 are left to our imagination,
as well as the vertices for £ = lh(a) > 4 suggested by the dots. (The
figure actually shows the “binary spread’” or “binary fan” 6.10 as
far as its vertices with lh(e) < 4.)

An infinite choice sequence a or «(0), (1), «(2), ... is represented
by an infinite path in the tree, starting at the leftmost vertex (occu-
pied by) [ ] and following arrows; a finite sequence of choices by an
initial segment of such a path, or by the vertex a(f) at the (right)
end of that segment. Thus, before «(0) is chosen, we are at the vertex
[ ]; then if we choose «(0) = 1, we move to the vertex [1]; choosing
next a(l) = 0, we continue to (I, 0]; choosing a(2) = 1, to [1,0, 1];
choosing «(3) = 1, to [1,0, 1, 1]; etc.
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Consider a predicate R(a), effective at least when applied to sequence
numbers a. For each a, let us follow the corresponding path in the
tree (starting from []) until we first encounter a vertex a(x) for
which R(a(x)), if we ever do, wherecupon we underline that vertex.
In the language of 6.3, we underline (the vertices occupied by) the
immediately secured sequence numbers.

Now (a}(Ex)R(&(x)), as we considered it in 6.3 and (intuitionistically)
in 6.4, means geometrically that, along each infinite path starting
from the leftmost vertex [ ] and following arrows, we will encounter
an underlined vertex. This is illustrated in Figure 1, so far as it can
be shown with only the arrows for s =0,1. More generally,
(B)(Ex)R(a*B(x)) or in words a is securable (but not past secured) means
geometrically that, along each infinite path starting from the vertex
occupied by a and following the arrows, we will encounter an under-
lined vertex.

Brouwer’s reversal of the direction consists in replacing this meaning
of a is securable (but not past secured) by that of belonging to the class
of sequence numbers which is defined to include the ones underlined,
and to include a whenever it includes all a*2s+1 for s =0, 1, 2, ...,
but to include no other sequence numbers. (This definition is an
example of an inductive definition, in the terminology of IM § 53.)

In Figure 1, the securable but not past secured sequence numbers
are those which are in bold face (heavy type), if we suppose appro-
priate behavior along paths containing arrows with s > 2. But under
the first meaning of securable (but not past secured), which we now
call the explicit sense, a vertex’s being in bold face means that pro-
ceeding rightward from it in the direction of arrows along all possible
divergent paths an underlined vertex will be encountered. Under
the second meaning (the inductive sense), a vertex's being in bold
face signifies its membership in the class of vertices generated by
putting into the class the underlined vertices, and proceeding in the
leftward or convergent direction (reverse to arrows) to include a in the
class whenever all a%28+1 (s = 0, 1, 2, ...) are included in the class.

Since the explicit sense, which our symbols in 6.3 directly express,
had already been used before Brouwer’s 1927 Footnote 7 was intro-
duced, that Footnote 7 must come to this: The two meanings of
securable (bul not past secured) are equivalent; and this equivalence
is given by intuition (by thinking the matter through intuitionistically).
We agree with him.
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In the figure, whether one puts vertices in bold face by the criterion of
finding an underlined vertex at or to the right of them along all paths,
or moves leftward across the figure putting vertices in bold face by
the two principles generating a class of vertices, the result is the same.

One of the implications in this equivalence is actually unproblemati-
cal, i.e. easily proved (cf. end 6.7). The other implication, that by
securable (but not past secured) in the explicit sense of securable (but
not past secured) in the inductive sense (or of the *‘well-orderedness
property”’, which the latter entails immediately) is essentially what
Brouwer subsequently called the ‘‘bar theorem’™ (1954 p. 14, cf.
Remark 6.3 below).

In 1924 § 1 (cf. 1924a §§ 1, 2), in the text of 1927 § 2, and in 1954,
he used a more complicated analysis to prove the bar theorem. Foot-
note 7 of 1927 concluded, ““The proof carried through in the text
for the latter property [well-orderedness] seems to me nevertheless
of interest on account of the propositions included in its line of
thought.”

We shall simply introduce what is needed here by an axiom schema
x26.3 which gives the effect of the bar theorem for the case of the
universal spread. This schema takes the form of a principle of induction
which attributes to the securable (but not past secured) sequence
numbers any property expressible in the symbolism of the system
which originates and propagates in the same way as the securability
property itself (under the inductive sense). Our procedure amounts
to adopting Brouwer’s 1927 Footnote 7 in place of the more elaborate
treatment in the text of 1927.

We thus quickly get over a moot point in Brouwer’s deduction of
his analysis by postulating an axiom schema. This may strike some asan
evasion. But this axiom schema is independent of the other intui-
tionistic postulates, as we shall see in Corollary 9.9 (and 9.2, by which
its negation is unprovable). So there can be a question of deriving the
axiom schema (the bar theorem), only if we first substitute another
postulate to derive it from. We are unconvinced that any known
substitute is more fundamental and intuitive. However, in view of the
attention which the proof in Brouwer’s text of 1927 has continued to
receive, we shall also examine that, in 6.12.

6.6. We consider now just how to state the bar theorem in the
formal symbolism.
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The definition of a property in Brouwer’s Footnote 7 reads, under
the restriction there to sequence numbers not past secured, as an
inductive definition of the securable (sequence) numbers. If we sub-
stitute ‘‘a which is secured” for “‘q such that R(a)”, then without the
restriction it reads as an inductive definition of all the securable
numbers (Kleene 19552 p. 416). If we omit the restriction, but require R
to be a predicate such that, for any «, R(&(x)) for at most one z, it
reads as an inductive definition of the numbers securable but not past
secured. If we simply omit the restriction, it reads as an inductive
definition of the barred numbers. It makes little difference to us here
which reading we use, and the last is the simplest.

We also obtain some simplification by stating the induction principle
corresponding to the inductive definition only for inferring properties
of 1 (for which ‘securable’, ‘securable but not past secured’ and
‘barred’ are equivalent). We do not lose thereby, as we shall verify
in 6.11.

For securability in the explicit sense of 6.3 we now write ‘‘secu-
rable,”, in the inductive sense of Footnote 7 ‘“‘securable,”. The bar
theorem is then the implication

* securable; — securabley,

when the right side is rendered by the principle of induction corre-
sponding to the inductive definition (cf. IM § 53). We want to formalize

this, applied to 1, with respect to R.
~ The left side of (*) is then simply (a}{Ex)R(a(x)).

Let J(R, A) be (a)[Seq(a) & R(a) — A(a)) & (a)(Seq(a) & (s)A (ax2s+1)
- A(a)] > A(1); and for any formulas A(a) and R(a), let R, A)
be the correspondingly constructed formula. The principle of induction
rendering the right side of (*) is (4)J(R, A).

Thus we render (*) in informal symbolism as (a)(Ex)R(&(x)) -
(A)J(R, 4). Expressing this in the formal symbolism as nearly as
we can in the absence of predicate variables (cf. IM p. 432), we are
led to VadxR(a(x)) D F(R, A), which (trivially rearranged) is *26.1.

6.7. Before postulating a slight restriction of this for the basic
system or the intuitionistic system, we verify that it is provable in
the classical system. The proof is a formalization of the classical proof
of (*) in Kleene 1955a (E) p. 417.

If a, s, x are any number variables (a and s distinct), « is any
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function variable, A(a) is any formula not containing s free in which s

is f.ree for a, and R(a) is any formula not containing « or x free in
which e and x are free for a: @ur Theoram ( classical)

*26.1%. F YadxR(a(x)) & Va[Seq(a) & R(a) D A(a)] &
Va[Seq(u) & VsA(as28+1) 5 Afa)] 5 A(1).

Proor. By the classical propositional calculus, it will suffice to
assume

(a) VafSeq(a) & R(a) o A(a)],
(b) Va[Seq(a) & VsA(ax28+1) D A(a)),
(c) =A(l),

and deduc? =VaIxR(a(x)), which by the classical predicate calculus
(*85, *86) is equivalent to aVx=R(&(x)). Likewise (b) is equivalent
to Va[Seq(a) & =A(a) > 35 A (ax25+1)], whence by *97 Va3s[Seq(a) &
=A(a) O ~A(a*2*1)], whence by *2.2 3oVa[Seq(a) & ~A(@) D
~A@*2°®* ] Assume for 3-elim. from this

(d) Va[Seq(a) & 4A(a) o —A(as2°@®+1)]

By Lemma 5.3 (¢}, JaVxa(x)=0(z(x)); so assume
(e) Vxa(x)=0(%(x)).

Now we deduce by induction

(f) -A(@(x).

Basis. By *23.1 and *B3, &(0)=1. So by (c), 2A(x(0)). IND. STEP.
&(x') = X(x)#2°*! (423 8) — 5(x)u2E N1 [(e)]. So by (d) with the
hyp. ind. and. *23.5, mA(a(x"). - By (f) and (a) with *23.5, aR(a(x)).
By V- and 3-introd., 3a¥x-R(a(x)).

The converse implication

(**) securable; — securableg,

(Kleene 1955a (D) p. 416) is (4)J(R, 4) - (2)(Ex)R(&(x)). This holds
intuitionistically, a fortiori from (R, Ay) — («)(Ex)R(a(x)) where
Ay = 2a («)(Ex)R(axa(x)). So *26.2 can be considered as giving (**)
in the basic system.

If a, s, x are any distinct number variables, « is any function

variable, and R(a) is any formula not containing x, s, « free in which
X, s, « are free for a:
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*26.2. F{Va[Seq(a) & R(a) D VeIxR(axa(x))] &
Va[Seq(a) & VsVadxR((a#28+1)x&(x)) D VadxR{a*a(x))]
D VadxR(1*&(x))} D VadxR(&(x)).

ProoF. Using a=a#a(0) (by *22.6 with x23.1, *B3),
(a) Va[Seq(a) & R(a) D VadxR(a*a(x))].

Toward (b) below, assume (i) Seq(a) and (ii) VsVaIxR((a#28+1)*&(x)).
Using (i), IxR((a*2*®* )#{Axa(1 +x)}(x)). Assume preparatory to 3-
elim. (iii) R((a#2*®* )x{Axa(l +x)}(x)). But (a#2*®* x{dxa(]l +x)}(x)
= ax(2O* L xa(1+3)}(x)) [*229 with (i), *225, *23.5) =
axz(l4+x) [23.7 with x23.1, *B4, *B3, *127]. So by 3-introd., (com-
pleting) the 3-elim., and V-introd., Ya3xR{a*a(x)). By &-elim. and
O- and V-introd.,

(b) Va[Seq(a) & VsVadxR((a*x28+1)4a(x)) D YadxR{a*a(x))].

Assuming the antecedent of the main implication of *26.2, and using
(a) and (b), we obtain VadxR(1x@(x)), whence the consequent
VadxR(&(x)) follows by *22.7 with *23.5.

6.8. The restriction that R be an effective predicate, introduced
beginning 6.3 (but immaterial from the classical standpoint), must
be made explicit in postulating the bar theorem (*) for the basic
system or the intuitionistic system. As expressed by *26.1 simply,
(*) is inconsistent with the further intuitionistic postulate *27.1 to
be introduced in § 7, by *27.23. We give four forms *26.3a—x26.3d
of the new axiom schema. Whichever one is introduced now as the
postulate, all axioms by each of the others become provable. When it
is immaterial which one we cite, we call it simply *26.3. The stipu-
lations for *26.3a and *26.3c are the same as for *26.1. For x26.3b,
a and p are any distinct function variables, etc.

x26.3a. Va[Seq(a) D R(a) V qR(a)] & VaIxR(a(x)) &
Va[Seq(a) & R(a) o A(a)] & Va[Seq(a) & VsA(ax28+1) D A(a)]
DA(D).

x26.3b. Vadxp(&(x))=0&
Va[Seq(a) & p(a)=0D A(a)] & Ya[Seq(a) & VsA(ax28+1) D A(a)]
D A(l).
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x26.3c. VadlxR(x(x)) &
Va[Seq(a) & R(a) D A(a)] & Va[Seq(a) & VsA(ax25+1) D A(a)]
D A(D.

x26.3d. Vadx[R(a(x)) & Vyy«xR(@(y))}] &
VaV¥x[R(&(x)) & Vyy<x-R(&(y)) o A(x(x))] &
Va[Seq(a) & VsA(a%28+1) D A(a)] D A(l).

DERIVATION OF X*26.3b FrROM *26.3a. Taking R(a) in x26.3a as
p(a)=0, we have R(a) V-aR(a) by *158, a fortiori Va[Seq(a) >
R(a) V aR(a)].

x26.3a FROM *26.3b. Assume the four hypotheses (a)-(d) of
x26.3a. By *158, because Seqa) is prime, Seq(a) V ~Seq(a). Using
cases thence, and in the first case subcases from (a), (Seq(a) &
R(a)) V ~(Seq(a) & R(a)). Using this with *S0 to apply Lemma
5.5 (a), assume preparatory to 3-elim. from the result

0 if Seq(a) & R(a),
Vap(a)={ 1 if =(Seq(a) & R(a)).

Now Seg(a) o (R(a) ~ p(a)=0), using which and *23.5 the three
hypotheses of x26.3b follow from (b)-(d).

x26.3c FROM ¥26.3a. Assume Va3!xR(&(x)). Assume Seq(a}, so via
*23.6 we can put a=a(x) (i.e. we assume this preparatory to 3-
elims.). Using Lemma 5.6, R(&(x)) V ~R{&(x)), whence R(a) V -R(a).
By (completing) the 3-elims., D- and V-introd., ¥a[Seq(a) D R(a) V
=R(a)]. Also, VadxR(&(x)).

x26.3a FROM X26.3c. Assume the four hyps. (a)-(d) of x26.3a.
Let R'(a) be R(a) & V¥, cjn@R(Mi<yp{®*), so using *23.5 and *23.4
R'(&(x)) ~ R(@(x)) & Vyy<«xaR(&(y)). By *23.5 Seq(a(x)), so (a) gives
R(&(x)) V aR(&(x)). Thence by *149a and *174b Ve«[IxR(a(x)) D
3xR'(%(x))]), and by *69 VaIxR(&(x)) D Vad!xR'(&(x)). So we have
Vad!xR'(&(x)). Since R’(a) D R(a), we also have Va[Seq(a) & R'(a) D
A(a)). Now we can apply x26.3c with R’ as the R.

x26.3d FroM X26.3c. Use *174b.

6.9. The foregoing induction principle ¥26.3 takes care of the bar
theorem for the universal spread. We should like it also for other
spreads of choice sequences.

So instead of dealing with the class of all the sequence numbers a,
characterized by Seq(a), we shall now deal with any suitable subclass
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of them, which we shall characterize by a(a)=0 for some function .

For simplicity, we may omit from consideration terminated sequences
of choices (cf. 6.1), so this ¢ will serve as the choice law (the other
function of the choice law in 6.1, to say when a sequence of choices
terminates, is suppressed). We may do this here without loss, since
we are interested only in what happens up to an x such that R{&(x)).
Indeed in general, with a simplified choice law o that doesn’t provide
for termination, we can still obtain the effect of termination, either (a)
by using a predicate R and considering «(0), «(1), a(2), ... to termi-
nate at a(x—1) for the least x if any such that R(a(x)), or (b) for
spreads with a non-trivial correlation law, by using positive integers
as (or to represent) the objects which we are interested in correlating,
and correlating 0 otherwise (essentially Brouwer 1924-7 I Footnote 1).

In our theory of choice sequences we have been using to advantage
the empty sequence, represented by the sequence number &(0) = 1.
(Brouwer employed neither the empty sequence, nor sequence
numbers.) For spreads all of whose elements are to be sequences with
the same first member, we find it convenient to correlate that first
member to the empty choice sequence. Then the correlation law p
operates simply on all sequence numbers a with ¢{a) = 0. When we
don’t want the elements all to begin with the same first member
(correlated to 1), we may simply ignore what p(1) is. But whether
we do or do not wish to consider p(1) as first member of the elements,
it seems to us natural to take advantage of our empty sequence by
letting the spread be non-empty exactly when the empty sequence
is permitted, i.e. when ¢(1) = 0. Thus the choice law suffices itself
for deciding whether a spread is empty or not.

When we thus both omit terminated sequences and use the empty
sequence to test for a spread’s not being empty, we are led to the
following formula Spr(s) expressing in the formal symbolism the
restrictions on o that it characterize the choice sequences for a spread.

Spr(s): Va[s(a)=0 2 Seq(a)] & Ya[o(a)=0 D Iso(ax28+1)=0]
& Va[Seq(a) & o(a) >0 D Vso(ax28+1)>0].

In *26.4 we state the bar theorem for spreads generally, using this
version of the notion of ‘spread’. The second hypothesis a(1)=0
expresses that the spread is not empty.

If we were simply to omit terminated sequences (which would give
the version of Heyting 1956 pp. 34-35, = essentially Brouwer 1924-7
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[ Footnote 2), we would use instead of Spr(s) the formula Spd(s)
obtained from it by prefixing o(1)=0 & and replacing the second Va
by Va,.,. *26.4 would become *26.4" with 3sa(28+1)=0 replacing
6(1)=0 to express the non-emptiness of the spread.

Under the version of ‘spread’ in Brouwer 1954, all spreads are
non-cmpty.

That a choice sequence « is permitted by the choice law ¢ of a
spread is expressed formally by Vxe(&(x))=0, which we abbreviate
as "‘a€c’.

The form *26.4a of *26.4 corresponds to ¥26.3a and is proved from
it; using instead Xx26.3b—x26.3d, corresponding forms *26.4b-*26.4d
are obtained (not written out when clear). Also, from any one of
*26.4a—*26.4d the others can be derived (using only Postulate Groups
A-D), as with *26.3. Similarly with *26.6, *26.7 and *26.8 below.

%26.4a.  Spr(o) & o(1)=0 & Va[s(a)=0> R(a) V ~R(a)] &
Vo, 3xR(&(x)) & Va[o(a) =0 & R(a) D A(a)] &
Va[o(a)=0 & Vs{o(a#25+1) =0 5 A(ax2s+1)} 5 A(a)] D A(1).
%26.4d. F Spr(c) & 6(1)=0 & Yo e, IX[R(&(x)) & Yyy<xR(E(y)] &
VaVx[o(a(x)) =0 & R(&(x)) & Vyy«xnR(@&(y)) D A@(x))] &
Va[o(a)=0 & Vs{o(a%28+1)=0 D A(a*25+1)} D A(a)] D A(1).

PROOF OF *26.4a. In I, we shall set up a mapping of the universal
spread onto the spread characterized by ¢. Thus, to each element «
of the universal spread, the function ay (= 4 (p(a(t)))=1) will
belong to the spread @, as shown by (¢). If « already belongs to o,
ay = a, as shown by (). (We give () and (n) for use in proving
*26.7a, *27.4 etc.) In II, this mapping carries the bar theorem for
the universal spread into the bar theorem for .

I. Assume the first two hypotheses of *26.4a, call them (1) and (2).

By cases from a(a)=0Va(a)7#0 (by *158), using (1), 3s[o(a)=0
O o(a*2s+1)=0], whence by V-introd. and *2.2 IzVa[s(a)=0D>
o(ax2"®+1)=0]. Assume
(@) Va[o(a)=0 D g(ax2"™*+1)=0].
In the following formula (8), the case hypotheses are exhaustive
(by cases from applications of *158, since the components are prime)
and mutually exclusive (using *50). So Lemma 5.5 (c) applies (indeed,
the special case), and we assume (preparatory to 3-clim. from the
result)
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0 if -Seq(a),
1 if Seq(a) & lh(a)=0,
(B) Vay(a)=1(3(a))p*25*! if Seq(a) & Ih(a) #0 & o((¥(a))p*25+1)=0,
(?(d.)) B*zn((v(u.))n) +1
if Seq(a) & lh(a) %0 & o((3(a))p*25+1) £0

where B is TT; - 1P{*" and S is (@)=, =1. If in (B) we use &(0)
for a (via V-elim.), the second case applies and gives v(@(0) =
¥(1) = 1 (using *23.5, x23.1, *B3). If in (8) we use &(x’) for a, then
the third or fourth case applies; furthermore using *23.4, *23.2, *23.8
etc., B=a(x), S=a(x), &x') = a = B-p}*' = Ba2S+l=a(x)*2"0*],
so B < a (using *143b, *3.10 etc.) and (3(a))B = v(B) = y(@&(x))
(by *24.2). Now by ind., using (2) in the basis, and () to deal with
the fourth case of (B) in the ind. step,

(v) oly((x))=0.
Let ““a,” abbreviate At(y(&(t)))¢=1. Now we deduce by induction

@) ax)=v(&E)

Basis: trivial. IND. STEP. & (x') = o (x)ue2((rE@M=D+L [#23.8, x0.1]
— y{a(x))$2EEM=D+1 (hyp ind ], which (using (y(@(x))¥2A*1)x =
(x, (x)*24+1)x [hyp. ind.) = A+1), if the third case of (8) applies to
a=a(x’), = y(&x))*2***! = y(&(x’)) {if the fourth case applies,
= y(&(x))#2"EM L = y(3(x))}. — By (y) and (3),

() «.€c.

We also deduce by induction
€  o@x)=0>y(ax)=alx).

IND. STEP. Assuming o(&(x))=0, the third member of (1) gives
o(@(x))=0, so by hyp. ind. y(&(x))=a(x), and the third case of (8)
applies. — By (3), ({), *23.2and *6.3, 5(a(x"))=0 D a.(x) =a(x), whence

(n) a€6 Da,=a.

IL. Assume also the remaining hyps. (3)=(6) of *26.4a. We shall
apply *x26.3a with R(y(a)), A(y(a)) as the R(a), A(a). If we can then
verify the four hyps. of x26.3a, the concl. of *26.4a will follow using
y(1)=1 (in I). We get the first hyp. by (y) with (3) (using *23.6 to
put a=a(x) preparatory to 3-elims.). For the second, by () and (4)
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3xR(a (x)), whence by (8) IxR{y(a(x))). We get the third (putting
a=a(x)) by (y) with (5). For the fourth, assume Seq(a) & VsA(y(a*28+1)).
By (y) with *23.6, o(y(a))=0. Put x=Ih(a). Assuming o(y(a)*28+1)=0,
and using *22.8, *22.5, *23.6 to put a*28*1=&(y) (then y=x' [*22.8,
£20.3, *23.5], a-pit! = ax28+l [x21.1 ectc.] = &(x') = &(x)-pE*!
[*23.8], so s=a(x) [*19.11, *22.2, *19.9, *6.3] and a=a&(x) [*133)),
the third case of (8) applies to &(x’) and gives y(&(x’))=y(a)*28*1,
so VsA(y(a*2s+1)) gives A(y(a)x28+1); thus Vs{s(y(a)*2¢+1)=0>
Aly(a)*25+1). By (6)., A(v(a)).

6.10. From his bar theorem Brouwer inferred his “‘fan theorem'
(implicit in 1923a p. 4 (11); 1924 Theorem 2; 1927 Theorem 2; 1954 § 5).
A “finite set” or “finitary spread’, most recently called a fan, is a
spread in which each choice must be from a finite collection of numbers.
Say e.g. that, for £ =0, 1,2, ..., the number aff) must be chosen
from among 0, 1, ..., B(&(1)); ie. (Ha(t)<p(a(?)). We shall here be
considering only the choice sequences underlying a fan, which con-
stitute a fan by taking for the correlation law p the trivial correlation
p(&(x")) = «(). According to one version of the fan theorem (classically
true), if, for all choice sequences « restricted to this fan (determined
by B), (Ex)R(&(x)), then there is a finite upper bound z to the least
x’s for which R(&(x)). In this “‘pure” version, symbolized by *26.6a
(or *26.6b-*26.6d), we can prove the fan theorem from the bar
theorem with no further postulate. Another version *27.7 (classically
false), favored by Brouwer, will follow from this by the new intu-
itionistic postulate X27.1 of § 7. A classical contrapositive of the present
version is Konig's lemma 1926, which we shall give in Remark 9.11.

First, we give a proof of the present version of the fan theorem
informally. Consider any sequence number a belonging to the given
fan, i.e. representing a finite choice sequence belonging to that fan;
by the subfan issuing from a we mean the fan of those choice sequences
a« by which @ can be extended in the given fan, i.e. such that, for each #,
the sequence number axa(x) represents a finite choice sequence
belonging to that fan. We apply Brouwer’s 1927 Footnote 7 in 6.5
above, but considering only sequence numbers not past secured
belonging to the given fan: “‘for every s (s =0, 1,2, ...)" becomes
“for every s < f(a)”. We use the corresponding form of induction
to prove as follows that, under the hyp. of the fan theorem for the
given fan and the given predicate R, the conclusion of the fan theorem

ey Le
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9.1, 9.2, Theorem 9.3 (c) and (d), and Corollaries 9.4 and 9.6 hold
(call them LEMMa (/8.2 etc)).

Proor. We reéxamine the former proofs, omitting the case of
¥26.3 in that of Theorem 9.3, to verify that the reasoning holds
good when the universe of functions is C.

Lemma 9.8, toward Corollary 9.9. (Kleene 1950a §3.) There is a
primitive recursive predicale R(a) such that, writing a €0 = {o 1s
general recursive} (Kleene-Post 1954) and B(a) = (f)a(f) <1 :

(@) {WeconmaEx)R(a());
() ((Ea) cosna®)ec: BE(x)),

whence

© (B o Ex)rc R(ER)),
whence by the fan theorem (the informal analog of *26.6a)
(@) (@ p(ENRE().
Proor. Using the Wy, W of IM p. 308, let
W = i 2o
R(@) = (Ehcm@fEY)y <@ =W ((@)e=1, 8, y).
Then, for each « with B(a),

(1) Rax) = (Et)l<.r(Ey)y<.t¢t”/u(l)(t’ y).

(a) Consider any general recursive « with B(a). Using IM Theorem
IV p. 281,

(2 «O)=1 = (EnTi(fo. t. y) = (E)T1((No. L. ),
Q) a@)=0 = (ENT(/1.2. ¥) = (ENT((N1. L. y),
for suitable numbers _/_o_._/l. f=<fo. f1). Case I: affy = 1. Then
(ENT2((No. /.y): and (EY)Ti((H1, /. y), whence (T (M /. 2). So
(ENWa(f, y), ie. (En)W_\(f.¥). Case 2: «ff) = 0. Similarly. — By
(1) (with x = f+y4-1, t = f), (Ex)R(a(x)).

(b) Consider any z. Let

Ll t<z & (Ey), .- Wo(t. y) (Cask A),

alt) =40 if 1<z & (Ey)y =Vt y) (Case B),
0 otherwise.
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<2 z. Suppose R(a(x)). By (1), there
isal < v <zanday < x=f < z4such that WV (¢, ¥). Thence we
obtain a contradiction, by cases. Cask 11 aff) = 1. Then Wy(t, y),
and by Case B of the dcfinition of «, aft) = 0. Casg 2: aff) = 0.
Similarly.

COROLLARY 9.9. The bar theorem *26.3 and the fan theorem *26.6
or *27.7 do not hold in the intuitionistic system without the former as
axiom schema, i.c. some formulas of the forms X263, ¥26.6, *27.7 (and
via deducibility relationships, *26.4, *26.7-%26.9, *27.8-*27.14) are
unprovable in it.

Also, by Corollary 9.5, the negation of no instance of *26.3 etc.
is unprovable. So ¥26.3 etc. are “independent” of the other postulates
of the intuitionistic system.

Proor of CoroLLaRY 9.9. Taking C = {the general recursive func-
tions} = 0 in Theorem 9.7, all formulas provable in the system in
question are 0O/realizable.

x26.3, *26.6. We shall show that the following substitution instance
of the fan theorem *26.6a (deducible in this system from an instance
of x26.3a) is not Ofrealizable: Va[Seq(a) D R(a) V qR(a)] &
VagIxR(&(x)) D IzVay,Ix, ., R(&{x})), where B(x) is Vtx(t)<1
(At] being substituted for 8 in *26.6), R(a) is a formula numeralwise
expressing the primitive recursive predicate R(a) of Lemma 9.8
obtained by the method of proof of Lemma 8.5, and for simplicity
x<z and at)< | are prime. Suppose a general recursive function e
Ofrcalizes it. By Lemma 0/8.4a (ii) in Theorem 9.7, R(&(x)) — {epexy
Ofrealizes-a, x R(&(x))}. By Lemma 8.8, F R(a)V -R(a), whence
F Va[Seq(a) o R(a) V aR(a}]. By Theorem 0/9.3 (a), the latter for-
mula is Ofrealized by a general recursive function fo. Consider any
«€0; by Lemma 0/8.4a (i), a function p €0 0/realizes-a B(x) only
when B(a), and in this case by Lemma 9.8 (a) x, = uxR(a(x)) is
defined and R(a(x1)). So {1 = Aa Ap <x1, €y 0Ofrealizes
VauoIxR(&(x)). Hence g = ({e}[Lo, £1])1 Ofrealizes-z Yoy, 3X, ., R(&(x))
for z = ({€}(%o, £1](0))o. Now consider any general recursive a such
that B(a). By Lemma 0/8.4a (ii), B(x) is Ofrealized-a by €y, so0
X<z is Ofrealized-x, z by ({{n}[a]}{eyzy)) 1.0, and R(&(x)) is Ofrealized-
&1 by ({nlelenmDia for x = ({{nlel}enm)Oo. Then x <z,
and by Lemma 0/8.4a (i), R(&(x)). Thus () cexma(EX),. R(E(x)).
contradicting Lemma 9.8 (¢).

*27.7. Proceeding similarly, for R(&(b)) as the A(x, b) of *27.7,

Then ac0 & B(a). Consider any x <



